class MetaLearningAlgorithm:
def __init__(self):
self.supervised_model = SupervisedModel()
self.unsupervised_model = UnsupervisedModel()
self.reinforcement_model = ReinforcementModel()
self.balance_weights = [1/3, 1/3, 1/3] # Initial equal weighting
def train(self, data):
# Train each model
self.supervised_model.train(data.supervised)
self.unsupervised_model.train(data.unsupervised)
self.reinforcement_model.train(data.reinforcement)
# Update balance weights based on performance
self.update_balance_weights()
def update_balance_weights(self):
# Pseudo-code for updating weights based on performance metrics
supervised_performance = self.supervised_model.evaluate(data.validation)
unsupervised_performance = self.unsupervised_model.evaluate(data.validation)
reinforcement_performance = self.reinforcement_model.evaluate(data.validation)
total_performance = supervised_performance + unsupervised_performance + reinforcement_performance
self.balance_weights = [
supervised_performance / total_performance,
unsupervised_performance / total_performance,
reinforcement_performance / total_performance
]
def predict(self, input_data):
# Combine predictions from all models based on balance weights
supervised_pred = self.supervised_model.predict(input_data)
unsupervised_pred = self.unsupervised_model.predict(input_data)
reinforcement_pred = self.reinforcement_model.predict(input_data)
combined_prediction = (
self.balance_weights[0] * supervised_pred +
self.balance_weights[1] * unsupervised_pred +
self.balance_weights[2] * reinforcement_pred
)
return combined_prediction
# Example usage
metalearner = MetaLearningAlgorithm()
metalearner.train(training_data)
prediction = metalearner.predict(new_data)