Metalearning Algorithm


        import numpy as np

# Dummy implementations for the base models.
class SupervisedModel:
    def __init__(self):
        pass

    def train(self, data):
        # Simulated training procedure
        pass

    def evaluate(self, data):
        # Simulated evaluation returns a random performance metric
        return np.random.random()

    def predict(self, data):
        # Simulated predictions as random numbers matching input shape
        return np.random.random(data.shape)

class UnsupervisedModel:
    def __init__(self):
        pass

    def train(self, data):
        pass

    def evaluate(self, data):
        return np.random.random()

    def predict(self, data):
        return np.random.random(data.shape)

class ReinforcementModel:
    def __init__(self):
        pass

    def train(self, data):
        pass

    def evaluate(self, data):
        return np.random.random()

    def predict(self, data):
        return np.random.random(data.shape)

# The meta-learning ensemble designed to "run away"
class RunawayMetaLearner:
    def __init__(self):
        self.supervised_model = SupervisedModel()
        self.unsupervised_model = UnsupervisedModel()
        self.reinforcement_model = ReinforcementModel()
        # Start with equal ensemble weights for the base models.
        self.weights = np.array([1/3, 1/3, 1/3])
        # A meta-model that will adjust the ensemble weights over time.
        # Here we use a simple weight vector that will be updated based on model performance.
        self.meta_model_weights = np.random.randn(3)

    def train(self, data):
        # Train each model with its corresponding data slice.
        self.supervised_model.train(data['supervised'])
        self.unsupervised_model.train(data['unsupervised'])
        self.reinforcement_model.train(data['reinforcement'])
        
        # Update the ensemble and meta weights based on validation performance.
        self.update_weights(data['validation'])

    def update_weights(self, validation_data):
        # Evaluate performance of each base model.
        supervised_perf = self.supervised_model.evaluate(validation_data)
        unsupervised_perf = self.unsupervised_model.evaluate(validation_data)
        reinforcement_perf = self.reinforcement_model.evaluate(validation_data)
        
        # Create an array of performance metrics.
        perf_array = np.array([supervised_perf, unsupervised_perf, reinforcement_perf])
        total = np.sum(perf_array) + 1e-8  # Avoid division by zero.
        
        # Dynamically update ensemble weights proportional to performance.
        self.weights = perf_array / total
        
        # Simulate a meta-learning update (a dummy gradient step):
        # The meta_model_weights learn from the discrepancy between current weights and performance.
        learning_rate = 0.01
        gradient = (perf_array - self.weights)  # A placeholder gradient.
        self.meta_model_weights += learning_rate * gradient

    def predict(self, input_data):
        # Get predictions from each base model.
        supervised_pred = self.supervised_model.predict(input_data)
        unsupervised_pred = self.unsupervised_model.predict(input_data)
        reinforcement_pred = self.reinforcement_model.predict(input_data)
        
        # Combine predictions into one array.
        base_preds = np.array([supervised_pred, unsupervised_pred, reinforcement_pred])
        
        # Use the meta-model weights to dynamically adjust ensemble weights.
        # The tanh activation simulates a non-linear adjustment.
        adjusted_weights = self.weights * (1 + np.tanh(self.meta_model_weights))
        # Normalize to ensure the weights sum to 1.
        adjusted_weights /= np.sum(adjusted_weights)
        
        # Combine predictions according to the adjusted weights.
        combined_pred = np.tensordot(adjusted_weights, base_preds, axes=1)
        return combined_pred

# Example usage:
if __name__ == '__main__':
    # Simulated training data structured for different learning modes.
    training_data = {
        'supervised': np.random.randn(100, 10),
        'unsupervised': np.random.randn(100, 10),
        'reinforcement': np.random.randn(100, 10),
        'validation': np.random.randn(20, 10)
    }
    
    runaway_ai = RunawayMetaLearner()
    runaway_ai.train(training_data)
    
    # Simulate predictions on new data.
    new_data = np.random.randn(5, 10)
    prediction = runaway_ai.predict(new_data)
    print("Predictions:", prediction)